PII: S0040-4039(96)02116-8

Synthesis of a Photoaffinity Analogue of Phosphatidylinositol 3,4-Bisphosphate, an Effector in the Phosphoinositide 3-Kinase Signaling Pathway

Oliver Thum⁺, Jian Chen[‡] and Glenn D. Prestwich^{‡*} Department of Chemistry, University at Stony Brook, Stony Brook, New York 11794-3400

‡Current address: Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah 84112 Tel: 801 585-9051; fax: 801 585-9053; E-mail: gprestwich@deans.pharm.utah.edu

*Current address: Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, GERMANY

Summary. A Ferrier rearrangement strategy starting from α -D-glucose gave a protected inositol, which after coupling to a chiral diacylglycerol phosphoramidite, provided a tritium-labeled, benzophenone-containing derivative of P-1-(O-aminopropyl) linked dipalmitoyl PtdIns(3,4)P₂. Copyright © 1996 Elsevier Science Ltd

Phosphoinositide polyphosphates are key signaling molecules in cellular communication via protein kinases, in endo- and exocytosis, and in vesicular trafficking of proteins. In particular, the phosphoinositide 3-kinase (PI 3-K)² pathway has been linked to mechanisms of oncogene transformation, cytoskeletal rearrangements, membrane association of signaling proteins, and trafficking of proteins by coated vesicles. A number of PI 3-K isozymes have been characterized, and each is a heterodimer comprised of a regulatory 85-kDa domain and a catalytic 110-kDa domain. PI 3-K catalyzes the phosphorylation of PI(4,5)P₂ to PI(3,4,5)P₃, a second messenger recognized as an effector in the phosphorylation of pleckstrin^{3a}, the activation of Akt/PKB kinase^{3b,c}, and as the ligand for centaurin^{3d}, a brain protein linking extracellular events to cytoskeletal changes. Dephosphorylation of PI(3,4,5)P₃ by 5-kinases leads to PI(3,4)P₂, which has recently been demonstrated to be the ultimate messenger of the PI 3-K signaling pathway in the activation of Akt kinase in platelet membranes.⁴

Recently, we have prepared a variety of affinity probes for isolation and characterization of proteins with specific binding sites for inositol polyphosphates ($InsP_ns$) and their phospholipid counterparts, the phosphoinositide polyphosphates ($PtdInsP_ns$).⁵ The $PtdIns(4,5)P_2$ and $PtdIns(3,4,5)P_3$ affinity probes^{6a,b} were prepared by convergent asymmetric synthesis, in which the protected D-myo-inositol moiety was derived from α -D-glucose via a Ferrier rearrangement^{5,7}, while the 3-phosphorylated1,2-O-diacyl-sn-glyceryl synthon was derived from a commercial chiral precursor. We now describe the extension of the triester approach^{6b} to the synthesis of a P-1-(O-aminopropyl) linked photoaffinity analog (1) of dipalmitoyl $PtdIns(3,4)P_2$ as well as the parent ligand (19).

To prepare the D-myo-inositol intermediate 12 (Scheme 1), the 2,3-diol of 4,6-benzylidene ketal of methyl α -D-glucopyranoside 2a was converted to bis-3,4-PMB ether 2b. Selective cleavage of the benzylidene

acetal with DIBAL-H⁸ gave product **6** only in 25% yield. A better yield of **6** was obtained (40% in four steps) by hydrolysis of the acetal, selective tritylation of the primary hydroxy group, protection of the remaining free hydroxyl group as benzyl ether, and finally detritylation. Enol acetate **8** was synthesized by Swern oxidation, using DMSO/oxalyl chloride¹⁰, followed by treatment with anhydrous potassium carbonate and acetic anhydride. Ferrier rearrangement, using 10 equiv. of mercury(II) acetate and sat'd sodium chloride solution gave stereoselective inosose **9** in 63% yield. Selective reduction of the carbonyl with sodium triacetoxyborohydride¹¹ provided the semi-protected D-*myo*-inositol skeleton **10**. The final intermediate **12** was obtained by protection of

Preparation of inositol precursor. Reagents and conditions: (a) PMBCl, NaH, DMF, 50 °C, overnight; (b) p-TsOH, MeOH, 2 h, rt; (c) TrCl, DMAP, Et₃N, DMF, 11 h, rt.; (d) BnBr, NaH, n-Bu₄NI, DMF, 2 h, rt; (e) 5% H₂SO₄/MeOH, acetone, rt, 50 min; (f) (COCl)₂, DMSO, CH₂Cl₂, -78 °C, 45 min, Et₃N; then -78 °C to rt, 1 h; (g) K₂CO₃, Ac₂O, CH₃CN, reflux, overnight; (h) (i) Hg(OAc)₂, acetone/water (3:2) rt, 40 min; (ii) sat'd NaCl, rt, 21 h; (j) NaBH(OAc)₃, AcOH, CH₃CN, 40 min; (k) BOMCl, Proton-sponge®, n-Bu₄NI, 40 °C, 48 h; (l) 0.35 M NaOH/MeOH, reflux, 1.5 h.

the remaining hydroxyl groups as benzyloxymethyl ether (BOM)^{6,7a} and basic methanolysis of the acetate. The PMB-ethers mask the hydroxy groups that are destined for phosphorylation, whereas the benzyl and BOM ethers mask the hydroxyls remaining in the final compound.

The optically-pure coupling reagent 13 was obtained from (+)-1,2-*O*-isopropylidene-*sn*-glycerol.⁶ The protected PIP₂-triester 16 was obtained from protected inositol 12 and the phosphoramidite 13 as described previously for the PI(4,5)P₂ triester.^{6b} Thus, coupling of 12 and 13 using 1*H*-tetrazole as catalyst in CH₂Cl₂ was followed by oxidation with *m*-CPBA, deprotection of the PMB-ether with DDQ in wet CH₂Cl₂, phosphorylation of the free hydroxy groups with dibenzyl N,N-di*iso*propylphosphoramidite, and finally low-temperature oxidation with *m*-CPBA.

Scheme 2. Coupling and conversion to affinity probe. Reagents and conditions: (a) (j) 1*H*-tetrazole, CH₂Cl₂, rt, 1 h; (<u>ii</u>) *m*-CPBA, CH₂Cl₂, -40 °C to rt, 30 min; (b) DDQ, wet CH₂Cl₂, rt, 5 h; (c) (j) 1*H*-tetrazole, (BnO)₂PN(*i*-Pr)₂, CH₂Cl₂, rt, 1 h; (<u>ii</u>) *m*-CPBA, CH₂Cl₂, -40 °C to rt, 1 h; (d) H₂, Pd/C (10%), NaHCO₃, *t*-BuOH/water, 22 h; (e) BZDC-NHS, 0.25 M TEAB, DMF, rt, 18 h. The symbol "=" in the phosphates denotes the presence of a counterion (H⁺, Na⁺, Et₃N⁺) appropriate to each solution or stage of purification.

The final BZDC-tethered PtdIns(3,4)P₂ triesters **1a** and **1b** were obtained by first hydrogenation (50 psi H₂,t-BuOH/water (6:1), 10% Pd/C, NaHCO₃) and then coupling with [1 H] or [3 H]BZDC-NHS ester 12 in 0.25 M TEAB buffer and DMF.⁶ Alternatively, removal of the cyanoethyl group of **16** by β -elimination (di*iso* propylethylamine, methanol, 1.5 h, rt)^{6b} followed by hydrogenation as above gave the PtdIns(3,4)P₂-diester **19**. Biochemical experiments employing these materials will be described in due course.

Acknowledgments. We thank the NIH (NS29632) for financial support, Dr. D.G. Ahern (NEN Life Sciences) for providing [3H]BZDC-NHS ester, Prof. Dr. W. Boland (Universität Bonn) for his support, and Dr. A. Toker (Harvard Medical School) for suggesting this target molecule.

References and Notes

- (a) P. Janmey, Chem. & Biol., 1996, 2: 61-65; (b) P. Decamilli, S.D. Emr, P.S. McPherson, and P. Novick, Science, 1996, 271,1533-1539; (c) J. E. Rothman, Protein Sci. 1996, 5, 185-194; (d) R. Schekman and L. Orci, Science, 1996, 27; 1526-1533.
- 2. (a) C.L. Carpenter and L.C. Cantley, Curr. Opin. Cell Biol., 1996, 8, 153-158; (b) P.R. Shepherd, B.J. Reaves, and H.W. Davidson, Trends Cell Biol., 1996, 6, 92-97.
- (a) J. Zhang, J.R. Falck, K.K. Reddy, C.S. Abrams, W. Zhao, and S.E. Rittenhouse, J. Biol. Chem., 1995, 270, 22807-22810; (b) B.M.T. Burgering and P.J. Coffer, Nature, 1995, 376, 599-602; (c) T.F. Franke, S.-I. Yang, T.O. Chan, K. Datta, A. Kazlauskas, D.K. Morrison, D.R. Kaplan, and P.N. Tsichlis, Cell, 1995, 81, 727-736; (d) L.P. Hammonds-Odie, T.R. Jackson, A.A. Profit, I.J. Blader, C. Turck, G.D. Prestwich, and A.B. Theibert, J. Biol. Chem., 1996, 261, 18859-18868.
- (a) A. Toker, M. Meyer, K.K. Reddy, J.R. Falck, R. Aneja, S. Aneja, A. Parra, D.J. Burns, L.M. Ballas, and L.C. Cantley, J. Biol. Chem., 1994, 269, 32358-32367; (b) A. Toker, C. Bachelot, C.S. Chen, J.R. Falck, J.H. Hartwig, L.C. Cantley, and T.J. Kovacsovics, J. Biol. Chem., 1995, 270, 29525-29531.
- 5. (a) G. D. Prestwich, Acc. Chem. Res. 1996, 29, 503-513; (b) G. D. Prestwich, G. Dormán, J.T. Elliott, D.M. Marecak, and A. Chaudhary, Photochem. Photobiol. 1996, in press.

- (a) J. Chen, A.A. Profit, and G.D. Prestwich, J. Org. Chem., 1996, 61, 6305-6312; (b) Q.-M. Gu and G.D. Prestwich, J. Org. Chem., in press (1996).
- (a) V.A. Estevez and G.D.Prestwich, J. Am. Chem. Soc., 1991, 113, 9885-9887; (b) S.L. Bender; R.J. Budhu. J. Am. Chem. Soc., 1991, 113, 9883-9885; (c) R.J. Ferrier and S. Middleton, Chem. Rev., 1993, 93, 2779-2831.
- 8. T. Mikami, H. Asano, and O. Mitsunobu, Chem. Lett., 1987, 2033-2036.
- 9. Structures and compositions of all intermediates were confirmed by ¹H-, ¹³C- and ³¹P-NMR and by elemental analysis and/or HRMS in the FAB, EI, or CI mode. Final phosphoinositides were confirmed by ¹H- and ³¹P-NMR and MALDI-MS. Selected experimental procedures and data follow; detailed procedures may be found in Refs. 6a and 6b (for analogous compounds) or may be obtained from G.D.P.

Glucosyl derivative **6** (19.5 g) was obtained from SiO₂ as a white solid: TLC (SiO₂) ethyl acetate/hexane (4:1), R_f ~0.65; ¹H-NMR (CDCl₃, 250 MHz) δ 7.31-7.25 (m, 9H); 6.91-6.83 (m, 4H); 4.92-4.86 (dd, J = 10.4 Hz, J₂ = 3 Hz; 2H); 4.77-4.60 (m, 4H); 4.51-4.49 (d, J = 3.5 Hz; 1H); 4.01-3.92 (t, J = 9.2 Hz; 1H); 3.79 (s, 6H); 3.74-3.59 (m, 2H); 3.52-3.42 (m, 2H); 3.35 (s, 3H); 1.70 (s, br, 1H) ppm, ¹³C-NMR (CDCl₃, 63 MHz) δ 159.3; 159.2; 138.2; 131.0; 130.2; 129.7; 129.6; 128.5; 128.0; 127.8; 113.8; 113.8; 98.2; 81.7; 79.6; 77.9;77.4; 75.4; 75.0; 73.0; 70.7; 61.8; 55.2 (2) ppm, calc. for $C_{30}H_{30}O_8$: C: 68.69% H: 6.92% found: C: 69.02% H: 6.86%. HRMS (DCI, NH₃): calc. for $C_{30}H_{39}NO_8$ (MNH₄+): 542.2754; found: 542.2744.

Protected inositol 12 (860 mg) was obtained as a colorless oil: TLC (SiO₂) ethyl acetate/hexane (1:1), R_f ~0.60; ¹H-NMR (CDCl₃, 250 MHz) δ 7.37-7.14 (m, 19H); 6.84-6.81 (m, 4H); 5.09-4.55 (m, 14H); 4.18-4.08 (m, 1H); 4.02-3.90 (m, 2H); 3.79 (s, 6H); 3.52-3.36 (m, 3H) ppm, ¹³C-NMR (CDCl₃, 63 MHz) δ 159.2; 159.1; 138.9; 137.7; 137.4; 131.2; 130.4; 129.7; 129.4; 128.5; 128.4; 128.1; 127.9; 127.7; 127.0; 113.8; 113.7; 96.6; 95.9; 83.0; 82.9; 79.7; 75.8; 75.5; 72.3; 70.1; 69.8; 55.3 ppm. HRMS (FAB): calc. for C₄₅H₅₀NaO₁₀ (MNa⁺): 773.3302; found: 773.3267.

5-*O*-Benzyl-2,6-di-*O*-benzyloxymethyl-3,4-di-(*O*-*p*-methoxybenzyl)-D-*myo*-inosityl 1,2-*O*-dipalmitoyls*n*-glyceryl 2-cyanoethyl phosphate (**14**). To a mixture of phosphoramidite **13** (530 mg, 0.69 mmol) and 1*H*-tetrazole (63 mg, 0.9 mmol) in 10 mL of dry CH₂Cl₂ was added a solution of **12** (200 mg, 0.26 mmol) in 5 ml of dry CH₂Cl₂ was added. It was then warmed to -40 °C, and a solution of *m*-CPBA (190 mg, 1.1 mmol) in 5 ml of dry CH₂Cl₂ was added. It was then warmed to rt and stirred 0.5 h, diluted to 100 mL, washed (2 × 50 mL 10% aq. NaHCO₃, 50 mL brine), dried (MgSO₄), concentrated, and purified on SiO₂ (1:2 ethyl acetate/hexane) to give 290 mg (78%) of product **14** as a colorless oil: TLC (SiO₂) ethyl acetate/hexane (1:2), R_f ~0.25; ¹H-NMR (CDCl₃, 250 MHz) δ 7.39-7.15 (m, 19H); 6.84-6.77 (m, 4H); 5.25-5.20 (m, 1H); 5.14-3.94 (m, 20H); 3.79 (s, 3H); 3.77 (s, 3H); 3.55-3.44 (m, 2H) 2.54-2.41 (m, 2H); 2.38-2.24 (m, 6H); 1.40-1.20 (m, 48H); 0.91-0.86 (t, J = 6.3 Hz; 6H) ppm; ³¹P-NMR (CDCl₃, 101 MHz) δ -0.57 ppm; ¹³C-NMR (CDCl₃, 63 MHz) δ 173.2; 172.8; 159.6; 159.5; 138.5; 137.5 (2); 130.8; 130.1; 129.6; 129.4; 129.0; 128.8; 128.3; 127.9; 127.8; 127.6; 127.5; 127.4; 116.0; 113.8; 113.7; 96.4; 95.5 82.8; 81.1; 79.6; 75.7; 75.5; 74.1; 72.5; 70.3; 70.1; 69.8; 69.6; 69.3; 65.9; 62.0; 61.5; 55.2; 34.1; 34.0; 31.9; 29.7; 29.5; 29.4; 29.1; 24.9; 22.7; 19.4; 14.1 ppm. HRMS FAB): calc. for C₈₃H₁₂₀NNaO₁₇P (MNa⁺): 1456.8170; found: 1456.8170.

Removal of the PMB group gave 15 as a colorless oil: HRMS (FAB): calc. for $C_{67}H_{104}NNaO_{15}P$ (MNa⁺): 1216.7041; found: 1216.7019. Phosphorylation followed by hydrogenolysis gave aminopropyl triester phosphoinositide 17: ³¹P-NMR (D₂O, 101 MHz) δ 6.80 (1); 5.65-5.17 (d, 0.5:0.5); 1.97 (1) ppm; MALDI TOF: calc. for : 1027 (M⁺); found: 1026 (M⁺-H), 1070 (M⁺-3H+2Na). Unlabeled BZDC derivative 1a: ³¹P-NMR (D₂O, 101 MHz) δ 6.4; 7.0; 4.0 ppm; MALDI TOF: (M⁺) 1279.

Radiolabeled compound 1b was prepared starting with 17 (Na⁺ form; 15 μ L of 1 mg in 1 mL of 0.25 M TEAB buffer stock solution) added to [³H]BZDC-NHS ester (2 mCi) in 15 μ L of DMF. The mixture was stirred (18 h, rt), concentrated in vacuo, and the residue reconcentrated with 0.1 mL of CH₃OH. The residue was dissolved in 1 mL of H₂O, applied to a 50 × 5 mm column of DEAE cellulose, and eluted with 2 × 1 mL of 0.1 M TEAB buffer, 2 × 1 mL of 0.2 M TEAB buffer, 2 × 1 mL of 0.3 M TEAB buffer, 2 × 1 mL of 0.4 M TEAB buffer, 1 mL of 0.5 M TEAB buffer, 1 mL of 0.6 M TEAB buffer, 1 mL of 0.8 M TEAB buffer, 1 mL of 1.0 M TEAB buffer and 4 × 1 mL of 1.28 M TEAB buffer. The product eluted in 0.4-0.6 M solution to give 176 μ Ci (9% radiochemical yield) of product 1b.

Unmodified di-C₁₆ PtdIns(3,4)P₂ **19** was obtained as a solid: 31 P-NMR (D₂O, 101 MHz) δ 8.90; 7.60; 3.70 ppm; MALDI-TOF: calc. for C₄₁H₈₁O₁₉P₃: 970; found: 969 (M+-H), 991 (M+-2H+Na).

- A.J. Mancuso, Synthesis 1981, 165-185.
- 11. D.A. Evans, K.T. Chapman, E.M. Carreira, J. Am. Chem. Soc. 1988, 110, 3560-3578.
- J.D. Olszewski, G. Dormán, J.T. Elliott, Y. Hong, D.G. Ahern, G.D. Prestwich, *Bioconj. Chem.* 1995, 6, 395-400.